

Drawing Shapes on a Coordinate Grid

Quick Review

To describe the position of a shape on a grid, we use **ordered pairs**. The numbers in an ordered pair are called **coordinates**.

The first coordinate tells how far you move right. The second coordinate tells how far you move up.

The point A has coordinates (4, 6). We write: A (4, 6)

Try These

1. Match each ordered pair with a letter on the grid.

8 7

6 5

4

3 2

1

0

2345678

- **a)** (20, 15) _____
- **b)** (25, 30) _____
- **c)** (5, 5) _____
- **d)** (20, 0) _____
- **e)** (20, 25) _____
- **2. a)** Plot each point on the grid.
 - A (2, 3)
 - B (5,7)
 - C (7,7)
 - D (8, 5)
 - E (6, 2)
 - **b)** Join the points in order. Then join E to A.

What figure have you drawn?

Play this game with a partner. You will need a number cube.

Take turns:

Roll the number cube twice.
Use the numbers rolled as an ordered pair.
Plot the point on your grid.

- If you roll an ordered pair which has already been plotted, you miss your turn.
- ► The first player to plot 4 points that form a rectangle is the winner.

Stretch Your Thinking

Write the coordinates of each point on your game grid.

Write the coordinates of each point on your partner's grid.

Transformations on a Coordinate Grid

Quick Review

We can show transformations on a coordinate grid.

Try These

- **1. a)** Identify this transformation.
 - **b)** Write the coordinates of the vertices of the quadrilateral and its image.

1. Describe as many different transformations as you can that would move Rectangle EFGH onto the image.

- **a)** Draw the image of Kite JKLM after a 90° turn clockwise about vertex L. Label the vertices of the image.
 - **b)** Write the coordinates of each vertex.
 - **c)** Write the coordinates of the vertices of the image.

Stretch Your Thinking

Draw a shape for which a translation image could also be a reflection image. Draw the image. Write the coordinates of the shape and the image.

Successive Transformations

Quick Review

The same transformation can be applied to a shape more than once.

When a shape is transformed 2 or more times, we say the shape undergoes successive transformations. Quadrilateral A"B"C"D" is the image of Quadrilateral ABCD after 2 successive translations.

The same is true for rotations and reflections.

Try These

 Make 2 successive translations of 3 squares right and 1 square up.

2. Rotate Trapezoid PQRS 180° about vertex Q.

Then rotate the image 180° about vertex S'.

Draw and label each image.

1. Translate the quadrilateral 3 squares right and 3 squares down.

Then translate the image 1 square left and 2 squares down.

Draw and label each image.

2. Reflect the quadrilateral in a line through AD.

Then reflect the image in a line though C'D.

Then reflect the second image in a line through A"D.

Stretch Your Thinking

Describe 2 successive transformations that move Trapezoid ABCD to its image, A"B"C"D".

Combining Transformations

Try These

1. Describe a pair of transformations that move $\triangle LMN$ to its image.

- a) Translate △QRS 3 squares right and 2 squares down. Then reflect the translation image in a vertical line through 7 on the horizontal axis.
 - **b)** List the coordinates of the final image.

2. a) Draw a pentagon whose vertices have these coordinates:

A(4, 10)	B(7, 10)	C(8,8)
D(6,6)	E(3,8)	

- b) Rotate the pentagon 180° about D. Then translate the rotation image 2 squares left.
- **c)** List the coordinates of the final image.

Stretch Your Thinking

Apply transformations to the triangle to make a design. Explain how you did it.

Creating Designs

Quick Review

At Home

We can use transformations of one or more shapes to create a design.

Start with Hexagon A.

Translate the hexagon 1 square right and 3 squares down to get Image B.

Translate Image B 2 squares left to get Image C.

Translate Image C 1 square left and 3 squares down to get Image D.

Translate Image D 2 squares right to get Image E.

Translate Image E 2 squares right to get Image F.

Try These

1. Transform this triangle to create a design. Describe the transformations you used.

1. Describe a set of transformations that could be used to create each design.

.

Transform copies of the shapes to create a design. Describe the transformations you used.

